00:00 ~Süre bitti.~
★Soru türü: 1

                

                

                

                

                

                
k bir doğal sayı olmak üzere
A = {a: a < 248, a = 3k}
B = {a: a < 251, a = 5k}

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                
Buna göre A∩B kümesinin eleman sayısı kaçtır ?
 ❁ Soru cevabı =⊳
Kesişim kümesini bulmak için iki kümenin ortak özelliklerini ortaya koymalıyız.
248, 251 sayısından küçük olduğu için 248 sayısını göz önünde bulundurmalıyız.
3 ile 5 sayılarının katlarından ortak olanları seçmeliyiz.
EKOK(3, 5) = 15

Küme elemanları 248 sayısından küçük ise en çok (248 - 1) = 247 sayısı kadar olabilirler.

247 =  15×16 + 7
Yani 247 içerisinde 16 tane 15 sayısının katı var.
Tabi bunlar pozitif sayılar. Sıfırı da eklersek 16 + 1 = 17 olur.

Cevap = 17
★Soru türü: 2
Almanca veya ingilizce ders alan 31 kişilik bir gurupta sadece ingilizce ders alanların sayısı 2, sadece almanca ders alanların sayısı 5 kadardır.

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                
Buna göre hem ingilizce hem almanca ders alanların sayısı kaçtır ?
 ❁ Soru cevabı =⊳
Gurubun tamamından sadece ingilizce ve sadece almanca ders alanları çıkarırsak hem ingilizce hem almanca ders alanlar kalır.

31 - 2 - 5 = 24

Cevap = 24
★Soru türü: 3

                

                

                
Bir sınıfta öğrenciler edebiyat ve türkçe derslerinden sınava girmişlerdir. En az bir dersten başarılı olanların sayısı 71, en çok bir dersten başarılı olanların sayısı 70 kadardır.

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                
Öğrencilerden edebiyat dersinden başarısız olanların sayısı 45 olduğuna göre türkçe dersinden başarılı olanların sayısı kaçtır ?
 ❁ Soru cevabı =⊳
Öğrencilerin durumunun 4 ihtimali var:
yalnız edebiyat dersinde başarılı olmak = a
yalnız türkçe dersinde başarılı olmak = b
iki derste de başarılı olmak = c
iki derste de başarısız olmak = d

En az bir dersten başarılı olanların sayısı = a + b + c
En çok bir dersten başarılı olanların sayısı = a + b + d
edebiyat dersinden başarısız olanların sayısı = b + d
türkçe dersinden başarılı olanların sayısı b + c

a + b + c = 71
a + b + d = 70
b + d = 45
b + c = ?

70 - 45 = a = 25

71 - a = b + c
71 - 25 = b + c = 46

Cevap = 46

c g d a

★Soru türü: 4

                

                

                

                

                

                
555 kişilik bir gurupta sadece yeşil ve mor renkte saçlılar vardır. Bunlardan yeşil saçlı olanların sayısı 468 kadardır. Beylerden yeşil saçlı olanların sayısı, hanımlardan mor saçlı olanların sayısının 6 katı ve hanımlardan yeşil saçlı olanların sayısının 9 katından 48 fazladır.


                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                
Buna göre mor erkekler kaç kişidir ?
 ❁ Soru cevabı =⊳
yeşil saçlı bey = a
yeşil saçlı hanım = b
mor saçlı bey = c
mor saçlı hanım = d

a + b + c + d = 555
a + b = 468
a = 6d = 9b + 48
c = ?

555 - 468 = c + d = 87

9b + 48 + b = 468
b = 42

9×42 + 48 = 6d
d = 71

c = 87 - 71 = 16

Cevap = 16
★Soru türü: 5

                

                
A ve B kümelerinin eleman sayılarıyla ilgili bilgiler aşağıda verilmiştir.

s(A) + s(B∩A) = 66
s((B∪A) \ (A∩B)) = 41
s((A\B) ∪ (A∩B) ∪ (B\A)) = 64


                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                
Buna göre s(B\A) kaçtır ?
 ❁ Soru cevabı =⊳
Soruda bahsedilen kümeleri sıralayalım.
Yalnız A'da olanlar:
s(A\B) = a
Yalnız B'de olanlar:
s(B\A) = b
Hem A hem B'de olanlar:
(A ve B'de olanlar:)
s(A∩B) = c
A'da olanlar:
s(A) = a + c
B'de olanlar:
s(B) = b + c
A veya B'de olanlar:
s(A∪B) = a + b + c

(a+c) + (c) = 66
a + 2c = 66

(a + b + c) - (c) = 41
a + b = 41

a + c + b = 64

64 - 41 = c = 23

a + 2×23 = 66
a = 20

20 + b = 41
b = 21

Cevap = 21
★Soru türü: 6

                

                

                

                

                

                
5 elemanı olan bir kümenin elemanlarından biri 4 sayısıdır.

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                
Buna göre bu kümenin alt kümelerinden kaçında 4 elemanı bulunur.
 ❁ Soru cevabı =⊳
Bu kümede 4 elemanı yokmuş gibi alt küme sayısını buluruz. Bu alt kümelerin içine 4 eklenmiş gibi düşünürsek sonuç aynı olur.
Kümenin 5 elemanı var, 4 sayısını kümeden çıkarırsak kümenin yeni eleman sayısı 
(5 - 1) = 4 olur.

Bir kümenin alt küme sayısı 2'nin o kümenin eleman sayısı kadar kendiyle çarpımına eşittir.
Eğer kümenin eleman sayısı 3 ise alt küme sayısı 2³ = 2×2×2 = 8 olur.

2 üzeri 4 = 16

Cevap = 16
★Soru türü: 7

                

                

                

                

                

                

                
Aşağıda A ve B kümeleriyle ilgili bilgiler verilmiştir.

s(A) = 10
B = {5, 4}
B⊂A

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                
Buna göre A kümesinin kaç alt kümesinde 5 bulunur fakat 4 bulunmaz.
 ❁ Soru cevabı =⊳
4 bulunmasın isteniyor, bir eleman kesin çıkarıyoruz.
5 bulunsun isteniyor, bir eleman çıkarmış gibi hesaplıyoruz çünkü sonuç aynı oluyor. Bakınız bir önceki soru.
Toplamda iki eleman çıkarıp hesaplıyoruz.

10 - 2 = 8
2 üzeri 8 = 256

Cevap = 256
★Soru türü: 8

                

                

                

                

                
A ve B kümeleriyle ilgili bilgiler aşağıda veriliyor.

s(A) = 7
s(B) = 4
B⊂A


                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                
Buna göre B⊂K⊂A koşulunu sağlayacak kaç farklı K kümesi vardır ?
 ❁ Soru cevabı =⊳
K kümesinde B kümesindeki elemanlar kesin olmalı.
K kümesinde A kümesindeki elemanlar olabilir de olmayabilir de.
İşte bu ihtimallerden dolayı çeşitlilik oluyor ve biz bu çeşitliliği hesaplamalıyız.
B kümesinden gelen elemanlar sabit olduğundan bir etkisi yok.
A kümesinde olup B kümesinde olmayan elemanlar çeşitlilik yapıyor.

s(A) - s(B) = 5

Şimdi bir kümenin 5 tane elemanı varmış gibi düşünüp alt küme sayısını bulalım.
2 üzeri 5 = 32

Cevap = 32
★Soru türü: 9

                

                

                
A ve B kümeleriyle ilgili bilgiler aşağıda veriliyor.

s(A) = 11
s(B) = 8
B⊂A


                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                
Buna göre B⊄K⊂A koşulunu sağlayacak kaç farklı K kümesi vardır ?
 ❁ Soru cevabı =⊳
Bu soruyu anlamak için öncelikle bir önceki soru gibi çözmeliyiz.
Yani soruyu 
Buna göre B⊂K⊂A koşulunu sağlayacak kaç farklı K kümesi vardır ?
gibi çözdükten sonra devam edelim.

11 - 8 = 5
2 üzeri 5 = 2048

Şimdi B⊄K koşulunu halledelim, yani K ile B aynı olamasın. Bunun için K'nın alt kümelerinden bir tanesini çıkarmamız yeterli.

2048 - 1 = 2047

Cevap = 2047
Menü tuşuyla yan menüyü açıp ders konularına, gereç tuşuyla gereçlere bak.
Önemli olan çok çalışmak değil, çok gelişmek. Çalışma verimini yükselt.
Soruyu çözerken kartın sağ üstteki tuşu ile kartı tam ekran yapabilirsin.
Cevabına bakıp öğrendiğin soruyu değişkenlerini yenileyerek tekrar çözmeye çalış.
Öğrendiğin soru türlerini süre tutarak çöz. 1. ve 10. çözme hızın arasındaki farkı gör.
Farklı soru türlerini dene, fakat birinde hızını artırmadan diğerine geçme.
Birçok konuda ilk soru veya soruların cevapları sonrakileri açıklayacak şekilde seçilmiştir.
Bir konudaki tüm soru türlerini öğrendikten sonra hepsini birden çözerken süre tut.
Hata gördüğün veya anlamadığın soruları sosyal medya adreslerimizde paylaş.